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Abstract. We present a method for the solution of ordinary differential equations over a 
semi-infinite interval, including the determination of eigenvalues, which is in principle 
capable of arbitrary accuracy. The solution is expressed in terms of finite polynomials, 
rendering the integration or determination of zeros o f  such solutions a straightforward 
matter. We have applied the method to a number of examples including the determination 
of the eigenvalues of the screened Coulomb potential and the three-dimensional quartic 
oscillator. 

1. Introduction 

Most ordinary differential equations (ODES) of mathematical physics are of second 
order with a regular singularity at the origin and an irregular singularity at infinity. In 
addition, the imposition of boundary conditions on the solution at infinity, such as 
that the solution remain finite or have a specific form, often requires the determination 
of an eigenvalue or similar parameter of the ODE. In this paper we present a method 
which we call the asymptotic shooting method, which enables one to find the solutions 
to such ODES, including the determination of eigenvalues or similar parameters to 
arbitrary accuracy. The solutions are given in terms of finite polynomials over certain 
intervals, so that the integration or determination of zeros of such solutions is a 
straightforward matter. 

2. General theory 

We shall present the theory in terms of second-order ODES. The generalisation to 
higher-order ODES presents no difficulties. We shall assume the situation which usually 
occurs in ODES from mathematical physics, i.e. one solution of the ODE is regular at 
the origin and the other is singular while at infinity both solutions are irregular. 
However, the method does not depend on these assumptions, which are used primarily 
to motivate the development. 

11 Permanent address: York University, North York, Ontario, Canada, M3J 1P3. 
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Let u , ( z )  and u 2 ( z )  be two independent solutions of the ODE obtained about the 
origin, in our case by the method of Frobenius. We take U, to be the regular solution 
and u2 to be singular at the origin. Similarly, let u + ( z )  and u - ( z )  be two independent 
asymptotic solutions of the ODE, i.e. they form a natural basis at infinity. Then there 
exist constants (connection coefficients) C:, C;, i = 1, 2, such that 

U I ( Z )  = c : u + ( z ) +  c ; u - ( z )  

u2(z) = c : u + ( z ) +  c ; u - ( z ) .  

If we now consider the case where the ODE contains a parameter (eigenvalue) E, 
and we are interested in a solution regular at the origin, we are led to a study of the 
dependence of the connection coefficients C +  and C- on the parameter E in the 
equation 

u,(E,  z )  = C + ( E ) u + ( E ,  z)+ C - ( E ) u - ( E ,  z ) .  ( 2 )  

In the case of solutions over a finite interval the (ordinary) shooting method can 
be used to obtain the desired solution, including the determination of the parameter 
E, in order to satisfy the required boundary conditions. If the interval is infinite, such 
a method cannot be applied directly. The problem becomes even more difficult if one 
of the asymptotic solutions is unbounded, as is often the case. The purpose of this 
paper is to present a method which will allow these connection coefficients to be 
determined with high accuracy, and in addition to determine the allowed values of 
the parameter E to similar accuracy. This latter problem reduces to finding E so that 
one of the connection coefficients in ( 2 )  vanishes. For example, if U +  is an exponentially 
increasing function at infinity and we require a solution which remains bounded, then 
we must determine E so that C’(E) vanishes. 

We shall consider a second-order ODE (without a first derivative term) of the form 

z2u”+ Q ( z ) u  = 0 (3)  

(although ODES with a first derivative term present no difficulty and can be treated in 
a similar manner) and assume 

a2 

Q ( z ) =  1 QiZi. 
i = O  

(4) 

Then it is well known (Birkhoff and Rota 1978, Coddington and Levinson 1955, 
Ince 1956) that there exists a solution regular at the origin of the form 

a2 

u ( z ) = z I  U i Z i  a ,  # 0. 
i = O  

(5) 

The exponent r and coefficients ai can be obtained in the usual way by substituting 
(4) and (5) into (3). Detailed formulae are given in Holubec and Stauffer (1985). 

The series in ( 5 )  will have some radius of convergence R. If we truncate the series 
after n, terms, say, then there will be another radius R ,  < R such that the truncated 
series will approximate the exact solution to within a preset accuracy for / z (  < R , ,  If 
we choose a value z0 with /zo/  < R ,  we can expand the solution about this point as 

13 

u ( z ) = z ~ ~ ( z ) = z ~  1 b;(z-zO)’ 
i = O  
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where b o = f ( z o )  and b ,  = f ' ( z o )  and the remaining coefficients bi can be found by 
substituting ( 6 )  into (3). Since our ODE clearly satisfies a Lipschitz condition (Birkhoff 
and Rota 1978, chapter 6 ) ,  the series in ( 6 )  truncated to n, terms will then approximate 
the exact solution to within our tolerance for / z  - zo/ < R2 for some R 2 .  A new zo can 
be chosen within this circle and the solution expanded about it as in ( 6 ) .  Thus we can 
analytically continue the solution of (3) to any desired non-singular point of the ODE 
in the complex plane with our polynomial approximations of the required accuracy. 
This problem was dealt with by Holubec and Stauffer (1985), which paper includes 
detailed formulae for the coefficients bi .  This solution is the function U, referred to 
above. Note that if (3) contains a parameter E then the coefficients ai and bi are 
functions of such a parameter. 

The next problem is to approximate the asymptotic solutions U +  and U- in a similar 
manner. Rewriting (3) as 

with q ( z )  = z - 'Q(z )  we assume that q ( z )  has the following asymptotic expansion for 
large IzI: 

U"+ q ( z ) u  = 0 (7) 

oc 

q ( z ) x z "  qiz-j as /zI+co qo+o 
i = O  

with m a positive or negative integer or zero. The various forms of the asymptotic 
solution of (7) depend on the value of m and are well known (Dieudonni 1971). They 
are summarised in table 1. The explicit values for the coefficients ci, s, and r can be 
obtained by substituting the appropriate form into ( 7 ) .  (See Holubec 1985, appendix 
3 for detailed formulae.) Note that in the first two cases in table 1, so has two possible 
values yielding the two solutions U +  and U-. Likewise in the last two cases r has two 
possible values. However, when m = -2 and the two values of r differ by an integer, 
the second solution may contain a logarithmic term as in the usual method of Frobenius. 
Since these solutions may in principle be asymptotic series in z - ~  they must be truncated 
and there will be a radius R, such that these truncated solutions will have the desired 
numerical accuracy for / z /  > R,. 

Having extended our solution U ,  to some point z ,  with /zll > R, we may determine 
the connection coefficients from the equations 

& ( E ,  z1) = C + ( E ) U + ( E ,  z , )+ C - ( E ) u - ( E ,  z , )  
u'(E,  z l )  = Ct(E)uf'(E, z , )+  C - ( E ) u - ' ( E ,  z , ) .  

Table 1. Asymptotic solutions for u " + q ( z ) u  = O  with q ( r ) X z " '  q,z - ' ,  q O # O .  

m 1 i (z )  

( 9 )  

00 -n ( n r 3 )  Z-r+Z-"- '+2 1 c ,z - l  
i = 0  
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Note that the solutions U;, U+' and U-' are derivatives with respect to the variable 
z and can easily be obtained by differentiating the appropriate polynomial solutions. 

Obtaining the coefficients C' and C -  to the required accuracy from (9) completes 
the problem in those cases where U +  and U- are both admissible solutions. This occurs, 
for example, in potential scattering problems in quantum mechanics where U' and U- 
are sinusoidal functions. Obtaining C+ and C- in these cases is then equivalent to 
finding the amplitude and phase of the scattered wavefunction, the quantities of physical 
interest. 

However, if, for example, uf is unbounded at infinity, then we must proceed further 
and determine the values of E such that C'( E )  vanishes. The problem we now consider 
is that of finding a sequence of values of E that converges to the desired root efficiently 
and accurately. 

Treating this problem as one of finding the zeros of the function C'( E ) ,  we propose 
to use Newton's method so that an approximate root E is obtained by the following 
iteration 

where DE represents differentiation with respect to E. 
The local rate of convergence of Newton's method is quadratic and thus gives an 

efficient method provided we can determine DEC+(E)  to high accuracy. This can be 
done in a straightforward manner as we show below. 

Let us differentiate (9) with respect to E to yield 

DEu, = C'(DEu')+ C-(DEu-)+(DECi)u'+(D€C-)~- 
DEu: = C'(DEu'') + C-(D,u-') + (DECt)u"+ (D,C-)u-'. 

Then (9) and (11) represent two sets of two equations in the two pairs of unknowns 
C', C -  and DEC+, D E C ,  since the functions DEulr DEu;, DEu-, DEu-', DEu+, 
DEu+' can be found by differentiating with respect to E the corresponding series 
solution for the functions and their derivatives with respect to z. Because the coefficients 
of the series solutions depend on E their derivatives with respect to E can be found 
by differentiating the corresponding recurrence relation. Thus, for example, from ( 6 )  
we get 

(11) 

m 

D E u ~ =  1 ( D & ~ ) ( z - z ~ ) ~ ' ~ .  
i =O 

Hence (9) and (11) can be solved for C+ and DECf, say, and then Newton's method 
(10) employed to find the desired value of E to high accuracy. 

We illustrate this method with specific examples in the next section. 

3. Examples of the use of the asymptotic shooting method 

In this section we present four examples which are based on differential equations 
that arise in quantum mechanical potential problems. 

Given a spherically symmetric potential V (  z) the Schrodinger equation containing 
this potential can be reduced to the radial form (in atomic units) 

2 u " -  [ 1 ( 1 +  1) + 2 z 2  V ( z )  - 2 E z 2 ] u  = 0 (12) 
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where I is the angular momentum quantum number which takes non-negative integer 
values and E is the energy eigenvalue to be determined. 

We will now treat the problem of solving (12) for four different potentials. 

3.1. The perturbed spherical oscillator potential, AzP2 +2z2 

As a check on our method, we found the eigenvalues of equation (12) for this potential. 
Equation (12) becomes 

z ~ u ” -  [ S ( S  + 1) -2Ez2+4z4]u = 0 (13) 

where s is the positive root of s ( s + l ) =  1(1+1)+2A. Equation (13) has a known 
solution (Landau and Lifshitz 1965) 

E - 2 s - 3  3 = e-z2zs+1F( - , s+-, 2 2z2 
4 

where F is the confluent hypergeometric function, and in order that U + 0 as z + 03 we 
must have E = 4n + 2s + 3 where n is a non-negative integer. In this case, the confluent 
hypergeometric function in (14) becomes the (generalised) Laguerre polynomial of 
degree n in z2, i.e. [n!/(s+#),]LL (2z2), where we have used Pochhammer’s 
notation (x), = x(x+ 1) . . . (x+  n - 1) and ( x ) ~  = 1. 

s+1 /2 )  

A solution regular at the origin has the form ( 5 )  with r = s + 1 and 

-2Ea,-2+4a,-4 
a, = a,= 1 

i ( i  + 2s + 1) 

(we use the convention that a, = 0 if i < 0). Hence a, = 0, i odd, and 

- 2 ~ , - ~  - 2ED,a,-2+4DEa,-, 
i ( i + 2 s  + 1) 

D,a, = DEao = 0. 

Thus both sets of coefficients a, and DEar can be found from the above recurrence 
relations. Now u(zo), u’(zo), D,u(zo) and DEu’(zo) can be evaluated from ( 5 )  and its 
derivative with respect to E and then we expand U as in (6). We find that 

br+2 = [ -( i + 1 ) (  i + 2s + 2) b,+, + zo( -2E + 42;) b, 

+ ( - 2 E  + 12z;)b,-, + 12~06,-2 + 4b,-,]/[zO( i + 1)( i + 2)] 

where i 3 0  and 

DEbl+Z= [ - ( i+  l ) ( i+2s+2)DEbr+ ,  -2zob, +zo(-2E +4zi)DEb, 

-2b,-, + (-2E + 12zo)D~b,-l  

+ 1 2 ~ ~ D ~ b , - ~  + 4D,b,-,]/ [ zo( i + 1) ( i + 2)] i s 0  

bo=S(zo) bl =f YZO) 

DEbO = DEf(Z0) D E ~ I  = D E ~ ’ ( z o )  

where f is defined in ( 6 ) .  Again the sets of coefficients b, and DEb, can be found from 
the above relations and the analytic continuation then proceeds as described above. 
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For this potential the value of m in (8) is 2. Hence from table 
solutions are given by 

m 
U * = e * L 2  1 A:z‘+-’ 

i = O  

where r , = F E / 2 - f  and 

A: = *[(rL- i + 2 ) ( r ,  - i +  1) - s(s+ l)]A?-2/(4i) 

1 the asymptotic 

(15) 

DEA: = [ ( r * -  i+:)A:-2*[(r, - i + 2 ) ( r + -  i +  1) -s(s+ 1)]DEA:-J/(4i) 
A , ” = l  A t = O  D E A t  = 0 DEAt  = 0. 

Substituting A: in (15) gives U*, and DEu* may be obtained from 

i 3 2  

oc 

D ~ U *  = +t( ln  z)u*+e*22 1 D~A:Z‘*-~ (16) 
r = O  

U‘* and DEu’* are obtained by differentiating (15) and (16). Having these, we solve 
(9) and (11) for C’ and D&+. Iteration (10) then gives us a new estimate of E and 
the process is repeated until IC’/D,C’) is less than a preset tolerance. 

3.2. The Kratzer’s molecular potential, Ar-2+ Br-’ 

This is another case which has a known solution (Kratzer 1920, Fues 1926). Equation 
(12) may be transformed into 

by the substitutions z = 2 m r ,  E = - B / ~ ,  s ( s + l ) = l ( I + 1 ) + 2 A ,  s > O .  
Equation (17) has the solution (see e.g. Landau and Lifshitz 1965) 

Z2U”  - [ s( s + 1) - EZ + $z’]u = 0 (17) 

U = zS+’ e-”’F( - E  + s + 1 ,2s  + 2, z) (18) 
and E - s - 1 = n, say, must be a non-negative integer if U is to be bounded at infinity, 
in which case the confluent hypergeometric function reduces to the Laguerre polynomial 
[n !/(2s + 2),]~‘,Z”~’(z).  

The solution regular at the origin is given by (5) with r = s + 1 and 
U,-l-4EUi 

a,= 1. 
= 4( i + 1)( i + 2s + 2) 

The coefficients bi for the analytic continuation (6) are given by 

bi- 1 - ( 4 ~  - zO) bi -4( i + 1) ( i + 2s + 2) bi+l b. = 
4z0( i+ l ) ( i+2)  1+2 

The expressions for DEai and D,bi can be easily obtained from (19) and (20). In this 
case, the value of m in (8) is zero and the asymptotic expansion (obtained from table 
1) is 

m 

(21) U * = e * z / 2  1 AiZLE-i 
i = O  

with 

A:. 1 i* & ) ( i f  E + 1) - s(s + 1) 
i + l  

= f 

Hence we may find D,A’ and proceed as above to determine the eigenvalue E.  
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3.3. The screened Coulomb potential 

Here we will find accurate energy eigenvalues of the screened Coulomb potential (as 
it is known in atomic physics; in nuclear physics it is called the Yukawa potential 
(Yukawa 1935) and in plasma physics the Debye-Huckel potential (Debye and Hiickel 
1923)) 

V( z )  = -z-’ exp( -az) (23) 

where a is a given parameter. For convenience we write E = -s2/2.  Thus substituting 
(23)  into (12)  we get 

r2u”+[2z exp(-az)-s2z2- l ( l +  l ) ] u  = o .  (24)  

Expanding the exponential in a power series we can find a regular Frobenius solution 
of the form ( 5 )  with r = 1 + 1 (since U must be zero at the origin) and 

a,,, = s * u , - ~ -  2 [ 2 ( - a ) ~ / j ! ] a , - ,  i+l)(i+21+2)1-’ 

Extending these solutions analytically we have from (6) 

a,= 1. (25)  I[( ( J’O 

I 

( i+21+2)( i+ l )b ,+ ,  +exp(-azo) [2 ( -a ) ’ / j ! ]b l - ,  - s2zob, - s2bi - l  
J = o  

x [ ( i + I)(  i + 2)z0]-’.  (26)  

At this point we must calculate two independent asymptotic solutions to (24)  which 
The coefficients D,ai and D,bi can be easily obtained from (25)  and (26) .  

in this case are simply 

U +  = exp(sz) and U -  = exp( -sz) (27)  

neglecting the contribution of the exponential term in the ODE. 

For this problem we require U to remain bounded at infinity, which implies that 
C’(s) must vanish. Hence we may employ the algorithm (IO) to find the values of s 
which satisfy this condition. Having found s we have then found the energy eigenvalues 
E = -s2/2.  

3.4. The three-dimensional quartic oscillator 

In this case the potential is taken as V(z) = z4  so that the differential equation (12 )  
becomes 

z2u“-[ l ( l+  1)+2z6-2z*E]U =o.  (28) 

a,  = [ 2 ~ , - , - 2 E a , - ~ ] / [ i ( 2 1 +  i + l ) ] .  (29)  

This has a regular solution at the origin of the form (5 )  with r = 1 + 1 ,  a ,  = 1 and 

Continuing the solution analytically as in ( 6 )  we have 

bri2 = -[b,,,( i + I ) (  i + 21+ 2 )  + b,(2Ezo-2z:) + b,...1(2E - 1 0 ~ : )  + 6,- , ( -20z~)  

+ b,-3( - 2 0 ~ ; )  + b,-4(-10zo) -2b,_,] /[zo(  i +  l ) ( i + 2 ) ] .  

Thus we may extend the functions U ,  U’, DEu, DEu’ into the asymptotic region. 
(30) 
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By comparing (28) with (7) and (8) we see that the exponent in (8) equals 4 so 
that using table 1 and substituting into (28) we find the asymptotic solutions to be 

with A,” = 1 and 

A:+l = * [ 2 E A : + [ i ( i  - 1) - l ( l + l ) ] A ? - J / [ ( i +  1)8“*] (32) 

and we may proceed to find E as in the other examples. 

4. Results 

In this section we discuss the details of the calculations for the examples in section 3 
and present numerical results. In the first two examples the eigenvalues are known 
exactly, so we have used these to test the efficiency of the method. For the last two 
examples we have presented extensive tables of what we believe to be the most accurate 
determination to date of the eigenvalues for these potentials. 

In all of the examples below, we used a constant step size between values of zo in 
the analytic continuation which was equal to the value of zO in ( 5 ) .  All calculations 
were carried out in quadruple precision on VAX and IBM computers. The CPU times 
quoted all refer to execution on a VAX 8600. 

4.1. The perturbed spherical oscillator potential, A z - ~  +22’ 

We performed these calculations for A = 0.05, 0.5 and 10, each for two different 
eigenvalues E. In each case we were able to obtain the exact eigenvalue correct to 31 
significant figures provided that the step size was sufficiently small (-0.1) and the 
number of terms in the Frobenius and analytic continuation series were sufficiently 
large (-30 in both cases). If these conditions were not met, the sequence of eigenvalues 
converged to an incorrect answer. 

When E has the value 4n + 2s + 3, then our method will produce the exact solution 
in the asymptotic region (for this particular potential) if 2 n  terms are used in the 
asymptotic expansion. In practice, we found that, with an initial estimate of E within 
1% of its exact value, the procedure would converge (to 31 significant figures) in about 
10 iterations on E when z ,  was taken equal to zO, the point at which the Frobenius 
series was evaluated. In order to test the validity of the method, we used values of 2 ,  

in the region of 10-20. In this case, it was possible to use as few as 2 or 3 terms in 
the asymptotic expansion and still obtain an answer correct to 31 significant figures. 
When A = 0.05 and z 1  = 20, with 30 terms in all the expansions and a step size of 0.1, 
each iteration on E took about 2.8 seconds of CPU time. 

4.2. The Kratzer’s molecular potential, Ar-’ + Br-’ 

This potential was investigated for a variety of values of s and E.  In this case we again 
needed a step size of the order of 0.1 to achieve 31 significant figure accuracy, but 
only about 20 terms were required in the Frobenius and analytic continuation series. 

When E = n + s + 1 and n terms were retained in the asymptotic expansion, (21) 
again gave the exact solution, and so any z1 2 zo could be used. However, we found 
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here that the coefficients A, in (21) increased faster than lo', which meant that z ,  
needed to be prohibitively large if we were to use fewer than the exact number of 
terms in the asymptotic expansion. Using more than the exact number of terms also 
made the results worse, as expected from the nature of the asymptotic expansion. 

For s =0.7 and n = 15, z ,  had to be 120 in order to obtain an accuracy of 30 
significant figures if the asymptotic expansion had 14 instead of the exact 15 terms. 
In this case, the CPU time required was about 5 seconds per iteration. 

4.3. The screened Coulomb potential 

We have performed these calculations for 1 = 0 retaining 25 terms in the series ( 5 )  and 
(6) and taking successive points zo along the positive real axis in steps of 0.125, with 
z1 = 70. In order to ensure that the procedure was converging to the correct eigenvalue, 
we varied zl, the step size, and the number of terms in ( 5 )  and (6) until no change in 
the energy eigenvalue was obtained in the first 31 figures when these were changed. 
In this case it was necessary to take such a large value of z1 in order that the neglect 
of the exponential term in the asymptotic region not affect the result. We would like 
to point out that this requirement for large values of z1 holds generally for short-range, 
i.e. exponentially decaying, potentials. Thus the present method is more efficient for 
long-range (inverse-power) potentials than for short-range ones since in the former 
case we have asymptotic solutions. 

For 1 = 1 and 1 = 2 it was necessary to use even larger values of z1 (-135-200) to 
obtain the desired accuracy, and the problem became worse as s decreased. This is 
presumably due in the main to the neglect (in the asymptotic form) of the exponential 
term in (24) with respect to s2z, an approximation which requires larger values of z 
as s decreases. 

The results for the lowest energy eigenvalue when a = 1 are shown in table 2, where 
we show the convergence of the iterations and the values for the connection coefficient 
C'. Table 3 shows our values for the energy eigenvalues for the Is, 2s, 3s, 2p, 3p and 
3d states for a selection of values of the screening parameter chosen in order to make 
comparisons with other calculations. We have compared our results with those of 
Rogers et a1 (1970), who integrated the differential equation numerically, with the 
results of Lam and Varshni (1979) and Gerry and Laub (1985) who used variational 
methods, and with those of Vrscay (1986) who used perturbation theory. Our results 
agree with those of Rogers et al, and with those of Lam and Varshni. We disagree in 
the last two or three digits with Gerry and Laub, but agree with the more precise results 
of Vrscay except for the last one or two digits in three cases. (Rogers et al show a 3s 
eigenvalue for a = f ,  but this is clearly a misprint since l / a  is less than their value of 
7.171 for the critical screening length.) CPU time for the 3d, a =0.08 case was about 

Table 2. Convergence of the iterations for the ground state of the Debye potential with a = 1. 

E (energy in atomic units) C+t(E) 

0.010 3 0.167 088 257 277 544 870 010 842 573 347 95 E-03 
0.0102857805006269769914271097962276 -0.111705 141077050244428873 36180599 E-06 
0.0102857899900134618173460106336786 -0 .498524647747527578845004044E-13 
0.010285 7899900176968047742144714263 -0.992919 54168024E-26 
0.0102857899900176968047742153149156 0.120 16042 E-33 
0.0102857899900176968047742153149156 
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Table 3. Eigenvalues for the Debye potential. 

Screening Energy 
constant (atomic units) 

1s states 

0.10 D-08 
0.002 
0.005 
0.01 
1/70 
0.02 
0.025 
1/30 
0.05 
1/60 
0.10 

0.20 
0.25 
0.30 
1/3 
0.40 
0.50 
0.60 
0.70 
5/7 
0.80 
0.90 
1.00 
1.10 
1.15 
1.16 
1.17 
1.18 
1.19 

117 

0.4999999900000000749999995000000 
0.498002996010958 1923297505995650 
0.4950186879256325306674683291517 
0.4900745067466941718092082523330 
0.4858659170905626300360739018390 
0.4802961059837850845531675687076 
0.4754611939298868258726236648661 
0.4674822800490660815676709885896 
0.4518164285245055438562170757554 
0.4365305967497793338249584117690 
0.407 058 030 613 403 156 754 507 070 361 1 
0.3712183390725104156678396183865 
0.326 808 511 369 193 384 882 495 419 281 8 
0.290919587521274339752038013 1011  
0.2576385863030541488789640693062 
0.2368326702696054262829569803449 
0.1983760833618502166084138599259 
0.148 1170218899326167117582207255 
0.1061359075058141930007386938110 
0.07183355590451221304026212680238 
0.06752959503288132127745677884431 
0.04470430449735966320034876624037 
0.02431419382750205488738415088719 
0.01028578999001769680477421531492 
0.002 287 244 234 053 485 463 476 080 685 041 
0.000455889021355957785682927445887 
0.000 258 622 006 376 600 045 257 206 291 145 
0.000 117 073 729 761 480 412 255 495 394 286 
0.000030985910874039344565231310402 
0.00000010303196149898458855554247515 

2s states 

0.10 D - 08 
0.002 
0.005 
0.01 
1/70 
0.020 
0.025 
0.03 
1/30 
0.04 
0.05 
0.06 
1/60 
0.07 
0.08 
0.09 
0.01 
1/7 
0.15 

0.1249999900000002999999930000000 
0.123011 944478 134440620850031 6153 
0.1200741433455985226110203936297 
0.1152932851679942562220455161704 
0.1113072821108057188223706122714 
0.106148320244695503 2507083411859 
0.101 775 903 096 982 713 088 091 927 353 3 
0.0975317861346608627700390609202 
0.094771911987607611315 1641853893 
0.089 414 634 185 159 188 415 714 621 025 4 
0.0817711957952531241734894137704 
0.0745785344127097096948851711592 
0.070 023 560 580 275 226 569 089 51 1 905 1 
0.0678159599814621812228103633106 
0.0614646562123003859114662511134 
0.0555073885532907363947989780736 
0.049928271331918889234996681037 
0.029969939257 143878404743800 
0.02722219072568851825018727 
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Table 3. (continued) 

409 1 

Screening Energy 
constant (atomic units) 

2s states 

0.20 0.012107865 19544046438585 
0.25 
0.30 0.000091602443891898904 
0.3 1 

0.003 395 906 283 239 307 796 4 

0.000 000 037 992 565 724 03 

3s states 

0.10 D-08 
0.20D-02 
0.50 D - 02 
0.10 D-01 
1/70 
0.20 D-01 
0.25 D-01 
1/30 
0.50D-01 
1/60 
0.10 D+OO 

0.055555554555555562306 
0.053 582 284 478 315 489 495 
0.050 720 178 473 178 174 475 
0.046 198 857 799 033 191 519 
0.042557959016724088371 
0.038 020 014 393 017 364 13 
0.03432950991154377544 
0.028 721 590 492 195 219 0 
0.019 352 554 814 752 34 
0.012 157 785 987 924 
0.003 208 046 744 69 

2p states 

0.20 D - 02 
0.50 D - 02 
0.10D-01 
1/70 
0.20 D -01 
0.25 D - 01 
0.30 D - 01 
1/30 
0.40 D - 01 
0.50 D-01 
0.60 D-01 
1/15 
0.70 D-01 
0.80 D - 01 
0.90 D - 01 
0.10 D+OO 

0.15 D+OO 
0.20 D + 00 
0.21 D+OO 
0.22 D + 00 

117 

0.1230099603754594837647289149273 
0.120061889409835274244767 1760726 
0.1152452240905641858947832163359 
0.111 210824 186077 817703 8800300728 
0.105 963 398 179 939 904 755 731 028 037 1 
0.101 492 463 570 784 334 495 260 636 444 4 
0.09713136679569131067178388921414 
0.094 283 812 211 279 496 494 008 933 417 74 
0.08872937358287952628793914146760 
0.08074038703778460971210274361007 
0.073 149619385860625023 80541842083 
0.068 303 903 388 944 102 080 294 905 665 65 
0.06594417699615657338456051665178 
0.059 11280478703123463569233292776 
0.052 645 701 331 584 274 463 576 906 198 28 
0.046 534 390 486 724 608 386 600 840 395 37 
0.024225265220566561482473 14468442 
0.021 104 888 927 736 242 916 943 382 961 43 
0.004 101 646 530 784 090 388 446 61 
0.001 808 760 066 281 795 366 987 
0.00002869724498522983 

3p states 

0.20 D - 02 
0.50 D-02 
0.01 D-01 
1/70 
0.20 D - 01 
0.25 D - 01 
1/30 

0.053 580 320 031 419 632 788 495 514 717 51 
0.05070822417583921479059630236771 
0.046 153 104 829 162 287 315 273 878 682 40 
0.042 468 034 317 299 059 101 925 455 275 01 
0.037 852 389 200 223 176 326 568 017 591 23 
0.03407891042893813054846316221741 
0.02830815624552539979406208673419 
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Table 3. (continued) 

Screening Energy 
constant (atomic units) 

3p states 

0.50 D-01 0.01855775188340599660489399388409 
1/15 0.01097320662096391422413453827 
0.80D-01 
0.10 DJrOO 0.001589001525867560 

0.006 329 995 439 268 113 269 338 1 

3d states 

0.20 D - 02 
0.50 D - 02 
0.10 D-01 
1/70 
0.20 D - 01 
0.25 D - 01 
1/30 
0.50 D - 01 
1/15 
0.80 D -01 

~~ ~~ 

0.053 576 390 876 136 829 815 017 304 590 99 
0.050 684 305 832 852 586 439 627 393 339 32 
0.046061454160659627 138 13027771671 
0.042287618 16065432694277864396737 
0.03751512770068693031343843249028 
0.033 573 122086666003 10296509094285 
0.02746829737841047896886494797870 
0.01691557056981584288611475824358 
0.008 476 557 099 266 295 856 418 97 
0.003 248 360 428 751 993 572 5 

35 seconds per iteration, the larger time being due partly to the greater complexity of 
the recursion relation ( 2 6 )  and partly to the larger z1 required. 

As a further check on our method and computer program, we also calculated the 
ground-state energy eigenvalue for this potential with a = 0. This corresponds to the 
potential for the hydrogen atom with a known lowest energy of -0.5. The convergence 
of our method to this result is shown in table 4. 

4.4. The three-dimensional quartic oscillator 

In table 5 we present to 10 decimal places the results of applying our method to the 
three-dimensional quartic oscillator. In this case, the step size required was about A, 
25 terms were kept in the three series expansions, and z ,  = 10. These same energy levels 
were calculated by Bell et al (1970). Some of their results differ from ours in the last 

Table 4. Convergence for the 1s-eigenvalue of H. 

0.8 
0.602116129526180714424611728441021 EO 
0.521543732140591483 130662376439319 EO 
0.501418490320542520969252083905473EO 
0.500 006 970 533 708 686 781 484 215 311 404 EO 
0.500000000169908547629803 838297194EO 
0.500000000000000000l00956388597809EO 
0.500000000000000000000000000000000 EO 
0.500000000000000000000000000000000EO 
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Table 5. Energy levels for the three-dimensional quartic oscillator. 

I = O  1 5 2  1 = 4  1 = 6  1 = 8  

2.393 644 016 5 
7.335 729 995 2 

13.379 336 552 6 
20.220 849 464 1 
27.706 393 442 8 
35.740 315 268 7 
44.256 235 399 1 
53.204 869 790 3 
62.547 902 773 1 
72.254 530 285 7 
82.299 346 209 1 
92.660 970 002 0 

103.321 113 098 4 
114.263 919 606 8 
125.475 486 227 5 
136.943 503 599 5 
148.656 982 474 0 
160.606 040 707 0 
172.781 734 848 2 
185.175 925 076 7 
197.781 165 506 2 
210.590 614 085 8 
223.597 957 848 3 
236.797 350 322 3 
250.183 358 697 1 

6.830 307 934 3 
13.004 562 954 6 
19.915 973 018 2 
27.445 940 483 4 
35.510 999 923 9 
44.050 163 171 7 
53.016 926 485 5 
62.374 565 038 1 
72.093 256 171 4 
82.148 234 794 4 
92.518 558 295 5 

103.186 248 331 5 
114.135 675 437 4 
125.353 105 776 9 
136.826 359 558 7 
148.544 548 442 3 
160.497 870 141 3 
172.677 445 300 7 
185.075 186 190 5 
197.683 689 732 9 
210.496 149 411 7 
223.506 282 022 8 
236.708 266 230 1 
250.096 690 608 0 

12.159 017 182 7 
19.217 580 482 7 
26.845 204418 1 
34.980 151 538 3 
43.572 088 795 0 
52.580 305 878 8 
61.971 496 783 5 
71.717 989 783 8 
81.796 443 536 8 
92.186 897 317 0 

102.872 073 186 5 
113.836 855 595 0 
125.067 896 911 8 
136.553 313 592 1 
148.282 448 615 5 
160.245 683 151 3 
172.434 285 350 7 
184.840 287 541 5 
197.456 385 434 8 
210.275 854 604 1 
223.292 480 667 7 
236.500 500 455 3 
249.894 552 064 7 

18.1524107220 
25.919 403 470 4 
34.157 245 349 1 
42.828 323 324 3 
51.899 433 998 5 
61.341 930 038 2 
71.131 168 923 1 
81.245 860488 8 
91.667 481 874 6 

102.379 793 306 7 
113.368 448 044 3 
124.620 680 391 0 
136.125 055 751 9 
147.871 269 288 6 
159.849 982 541 4 
172.052 689 804 4 
184.471 607 952 7 
197.099 584 892 5 
209.930 022 908 1 
222.956 814 024 2 
236.174 285 130 5 
249.577 151 099 1 

24.688 862 663 7 
33.055 556 655 3 
41.827 976 478 2 
50.980 826 621 5 
60.490 688 095 4 
70.336 467 433 2 
80.499 351 764 0 
90.962 593 725 4 

101.711 2570052 
112.731 972 576 8 
124.012 722 282 7 
135.542 652 889 6 
147.311 9185964 
159.311 548 346 5 
171.533 334 100 1 
183.969 736 562 5 
196.613 805 365 5 
209.459 11 1 200 7 
222.499 687 847 3 
235.729 982 418 5 
249.144 812 457 5 

I =  1 1 = 3  1 = 5  1 = 7  1 = 9  

4.478 039 219 5 
10.099 944 419 6 
16.599 520 882 9 
23.796 217 400 0 
31.578 082 210 1 
39.869 01 1 642 4 
48.613 504 047 4 
57.769 020 921 9 
57.769 020 921 9 
67.301 750 275 6 
77.184 061 133 7 
87.392 876 591 7 
97.908 582 079 1 

108.714263 471 1 
119.795 157 983 3 
131.138247 623 1 
142.731 951 237 0 
154.565 886 621 7 
166.630 683 607 0 
178.917 834 980 2 
191.419 576 016 8 
204.128 785 979 0 
217.038 906 726 4 
230.143 874 828 4 
243.438 064 450 4 
256.916 238 928 6 

9.401 160 155 8 
16.046 193 351 2 
23.331 473 229 7 
31.173 557 744 5 
39.508 457 405 2 
48.286 683 831 4 
57.469 034 094 6 
57.469 034 094 6 
67.023 703 317 7 
76.924 345 267 7 
87.148 746 218 5 
97.677 894 588 5 

108.495311 1856 
119.586 555 451 1 
130.938 853 601 5 
142.540 813 211 1 
154.382 200 420 8 
166.453 763 406 7 
178.747 090617 7 
191.254495 563 5 
203.968 922 160 6 
216.883 866 206 9 
229.993 309 656 0 
243.291 665 157 7 
256.773 728 914 6 

15.081 646 8644 
22.511 0459192 
30.454 795 012 4 
38.865 427 716 6 
47.702 456 022 2 
56.931 941 002 2 
56.931 941 002 2 
66.525 351 382 1 
76.458 482 734 3 
86.710 582 534 3 
97.263 67 1 363 3 

108.102 020 757 5 
119.21 1 749 925 0 
130.580 51 1 464 4 
142.197 243 797 8 
154.051 973 974 3 
166.135 658 881 3 
178.440 056 055 4 
190.957 617 552 1 
203.681 401 971 4 
216.605 000919 0 
229.722 477 058 7 
243.028 3 11 552 2 
256.517 359 165 6 

21.358 310 363 7 
29.436 169 241 9 
37.949 363 977 9 
46.867 355 674 0 
56.162 458 584 4 
56.162 458 584 4 
65.810 216 413 4 
75.789 177 334 0 
86.080 509 833 1 
96.667 614 293 4 

107.535 778 577 8 
118.671 887 143 0 
130.064 180 006 4 
141.702 054 228 8 
153.575 900 379 4 
165.676 967 359 1 
177.997 250 106 3 
190.529 395 772 9 
203.266 624 858 1 
216.202 664 512 8 
229.331 691 799 8 
242.648 285 147 4 
256.147 382 583 6 

28.135 402 860 2 
36 772 408 659 5 
45.790023 817 3 
55.166 943 708 1 
55.166 943 708 1 
64.883 109 665 0 
74.920 159 742 2 
85.261 481 407 7 
95.892 103 284 3 

106.798 532 312 8 
117.968 582 650 1 
129.391 215 245 5 
141.056 394 674 4 
152.954 964 350 4 
165.078 538 971 7 
177.419 412 253 3 
189.970 477 851 7 
202.725 161 156 6 
215.677 362 736 6 
228.821 404 392 1 
242.151 989 162 8 
255.664 161 642 7 
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one or two decimal places (see also footnote, table 3, Mathews et a1 1982, who calculated 
some of the same values). 

We also present in table 6 a more accurate determination of the n = 24, 1 = 1 
eigenvalue, using a step size of A, and compare it with previous work by Bell et a1 
(1970), Mathews et al (1982) and Killingbeck (1982). Approximate CPU time per 
iteration for this case was about 3.9 seconds. 

Table 6. Comparison of results for the E ( n  = 24, l = 1) eigenvalue (quartic oscillator). 

E (energy in atomic units) Source 
- ~ 

256.916 220 
256.916 238 
256.916 239 
256.916 238 928 607 025 721 207 966 4048 present work 

Bell er al (1970) (variational method) 
Mathews et al (1982) (perturbation theory) 
Killingbeck (1982) (the finite-diff erence method) 

Hodgson (1988) has calculated eigenenergies of the equation 

-‘P’‘+X~’P= E H 9  ? ( O )  = c Vr’(0) = 0 (33) 

where c is an arbitrary normalisation constant, to 32 significant figures. Putting 1 = 1 
in (28) and z = x x 21’6, we obtain (33) with EH = 22’3E. We have run this case with 
the same step size and number of terms as above, and obtain full agreement with 
Hodgson’s results using z1 = 6 in the case where Hodgson used the boundary condition 
?( 8) = 0. 

5. Conclusions 

In this paper we have presented a method for finding analytic approximations of 
arbitrary accuracy for ordinary differential equations over a semi-infinite interval. More 
importantly, the method produces eigenvalues of the ODE, again to arbitrary accuracy. 
We have tested this method on four different ODES and have reported eigenvalues for 
the screened Coulomb potential and quartic oscillator and which are the most accurate 
to date. 

It is of interest to compare our work with that of Hodgson (1988) who used a 
similar method to find eigenvalues of the harmonic and quartic oscillators. Whereas 
Hodgson used the secant method to generate successive approximations to the eigen- 
value, we use Newton’s method which is known to converge more quickly. On the 
other hand, our method requires the calculation of the derivatives of the polynomial 
coefficients with respect to the eigenvalues, which approximately doubles the amount 
of calculation per iteration. 

In addition, Hodgson calculates the eigenvalue by requiring U( z l )  = 0. This requires 
a sufficiently large z1 to satisfy this condition to the degree of accuracy required for 
the eigenvalue. In our method we determine the eigenvalue by matching onto the exact 
asymptotic form, which requires a z1 only large enough for this asymptotic form to be 
within the desired accuracy. Thus we were able to use z, = 6 to obtain the same accuracy 
on the quartic oscillator as Hodgson obtained with z, = 8. This is a particularly 
favourable example for Hodgson’s method since from (31) U a exp(-2”*3-’z3) and 
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hence decreases very rapidly. If we determine the eigenvalue for the screened Coulomb 
potential by solving U( z , )  = 0 by Newton’s method, we get only about half the significant 
figures when a = 0.1 than we did by matching onto the asymptotic expression at the 
same value of zl. 

We have the further advantage of having an asymptotic approximation for the 
solution for z > z1 with a continuous derivative at the matching point. Furthermore, 
the method we have proposed will work for the case where we wish to match onto the 
asymptotic solution U +  rather than U-, whereas Hodgson’s method is not applicable 
in this case. Such cases arise, for example, in the calculation of resonances in atomic 
systems, in which case the eigenvalues are complex numbers (cf Holubec 1985). Thus 
we have developed a method which is applicable to a wide variety of situations and 
produces highly accurate results for a modest amount of computational effort. 
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