Asymptotic shooting method for the solution of differential equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 234081
(http://iopscience.iop.org/0305-4470/23/18/014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 08:57

Please note that terms and conditions apply.

Asymptotic shooting method for the solution of differential equations

A Holubec \dagger, A D Stauffer $\ddagger \|$, P Acacia§ and J A Stauffer $\ddagger \ddagger$
\dagger The Institute for Space and Terrestrial Science, and Centre for Research in Earth and Space Science, York University, North York, Ontario, Canada, M3J 1P3
\ddagger Joint Institute for Laboratory Astrophysics, University of Colorado, and National Institute of Standards and Technology, Boulder, CO 80309-0440, USA
§ Physics Department, York University, North York, Ontario, Canada, M3J 1P3

Received 2 April 1990

Abstract

We present a method for the solution of ordinary differential equations over a semi-infinite interval, including the determination of eigenvalues, which is in principle capable of arbitrary accuracy. The solution is expressed in terms of finite polynomials, rendering the integration or determination of zeros of such solutions a straightforward matter. We have applied the method to a number of examples including the determination of the eigenvalues of the screened Coulomb potential and the three-dimensional quartic oscillator.

1. Introduction

Most ordinary differential equations (ODEs) of mathematical physics are of second order with a regular singularity at the origin and an irregular singularity at infinity. In addition, the imposition of boundary conditions on the solution at infinity, such as that the solution remain finite or have a specific form, often requires the determination of an eigenvalue or similar parameter of the ODE. In this paper we present a method which we call the asymptotic shooting method, which enables one to find the solutions to such ODEs, including the determination of eigenvalues or similar parameters to arbitrary accuracy. The solutions are given in terms of finite polynomials over certain intervals, so that the integration or determination of zeros of such solutions is a straightforward matter.

2. General theory

We shall present the theory in terms of second-order odes. The generalisation to higher-order ODEs presents no difficulties. We shall assume the situation which usually occurs in ODEs from mathematical physics, i.e. one solution of the ode is regular at the origin and the other is singular while at infinity both solutions are irregular. However, the method does not depend on these assumptions, which are used primarily to motivate the development.

Let $u_{1}(z)$ and $u_{2}(z)$ be two independent solutions of the ODE obtained about the origin, in our case by the method of Frobenius. We take u_{1} to be the regular solution and u_{2} to be singular at the origin. Similarly, let $u^{+}(z)$ and $u^{-}(z)$ be two independent asymptotic solutions of the ODE, i.e. they form a natural basis at infinity. Then there exist constants (connection coefficients) $C_{i}^{+}, C_{i}^{-}, i=1,2$, such that

$$
\begin{align*}
& u_{1}(z)=C_{1}^{+} u^{+}(z)+C_{1}^{-} u^{-}(z) \tag{1}\\
& u_{2}(z)=C_{2}^{+} u^{+}(z)+C_{2}^{-} u^{-}(z) .
\end{align*}
$$

If we now consider the case where the ODE contains a parameter (eigenvalue) E, and we are interested in a solution regular at the origin, we are led to a study of the dependence of the connection coefficients C^{+}and C^{-}on the parameter E in the equation

$$
\begin{equation*}
u_{1}(E, z)=C^{+}(E) u^{+}(E, z)+C^{-}(E) u^{-}(E, z) . \tag{2}
\end{equation*}
$$

In the case of solutions over a finite interval the (ordinary) shooting method can be used to obtain the desired solution, including the determination of the parameter E, in order to satisfy the required boundary conditions. If the interval is infinite, such a method cannot be applied directly. The problem becomes even more difficult if one of the asymptotic solutions is unbounded, as is often the case. The purpose of this paper is to present a method which will allow these connection coefficients to be determined with high accuracy, and in addition to determine the allowed values of the parameter E to similar accuracy. This latter problem reduces to finding E so that one of the connection coefficients in (2) vanishes. For example, if u^{+}is an exponentially increasing function at infinity and we require a solution which remains bounded, then we must determine E so that $C^{+}(E)$ vanishes.

We shall consider a second-order ODE (without a first derivative term) of the form

$$
\begin{equation*}
z^{2} u^{\prime \prime}+Q(z) u=0 \tag{3}
\end{equation*}
$$

(although odes with a first derivative term present no difficulty and can be treated in a similar manner) and assume

$$
\begin{equation*}
Q(z)=\sum_{i=0}^{\infty} Q_{i} z^{i} \tag{4}
\end{equation*}
$$

Then it is well known (Birkhoff and Rota 1978, Coddington and Levinson 1955, Ince 1956) that there exists a solution regular at the origin of the form

$$
\begin{equation*}
u(z)=z^{r} \sum_{i=0}^{\infty} a_{i} z^{i} \quad a_{0} \neq 0 \tag{5}
\end{equation*}
$$

The exponent r and coefficients a_{i} can be obtained in the usual way by substituting (4) and (5) into (3). Detailed formulae are given in Holubec and Stauffer (1985).

The series in (5) will have some radius of convergence R. If we truncate the series after n_{1} terms, say, then there will be another radius $R_{1}<R$ such that the truncated series will approximate the exact solution to within a preset accuracy for $|z|<R_{1}$. If we choose a value z_{0} with $\left|z_{0}\right|<R_{1}$ we can expand the solution about this point as

$$
\begin{equation*}
u(z)=z^{r} f(z)=z^{r} \sum_{i=0}^{\infty} b_{i}\left(z-z_{0}\right)^{i} \tag{6}
\end{equation*}
$$

where $b_{0}=f\left(z_{0}\right)$ and $b_{1}=f^{\prime}\left(z_{0}\right)$ and the remaining coefficients b_{i} can be found by substituting (6) into (3). Since our ODE clearly satisfies a Lipschitz condition (Birkhoff and Rota 1978, chapter 6), the series in (6) truncated to n_{2} terms will then approximate the exact solution to within our tolerance for $\left|z-z_{0}\right|<R_{2}$ for some R_{2}. A new z_{0} can be chosen within this circle and the solution expanded about it as in (6). Thus we can analytically continue the solution of (3) to any desired non-singular point of the ODE in the complex plane with our polynomial approximations of the required accuracy. This problem was dealt with by Holubec and Stauffer (1985), which paper includes detailed formulae for the coefficients b_{i}. This solution is the function u_{1} referred to above. Note that if (3) contains a parameter E then the coefficients a_{i} and b_{i} are functions of such a parameter.

The next problem is to approximate the asymptotic solutions u^{+}and u^{-}in a similar manner. Rewriting (3) as

$$
\begin{equation*}
u^{\prime \prime}+q(z) u=0 \tag{7}
\end{equation*}
$$

with $q(z)=z^{-2} Q(z)$ we assume that $q(z)$ has the following asymptotic expansion for large $|z|$:

$$
\begin{equation*}
q(z) \asymp z^{m} \sum_{i=0}^{\infty} q_{i} z^{-i} \quad \text { as } \quad|z| \rightarrow \infty \quad q_{0} \neq 0 \tag{8}
\end{equation*}
$$

with m a positive or negative integer or zero. The various forms of the asymptotic solution of (7) depend on the value of m and are well known (Dieudonné 1971). They are summarised in table 1 . The explicit values for the coefficients c_{i}, s_{i} and r can be obtained by substituting the appropriate form into (7). (See Holubec 1985, appendix 3 for detailed formulae.) Note that in the first two cases in table $1, s_{0}$ has two possible values yielding the two solutions u^{+}and u^{-}. Likewise in the last two cases r has two possible values. However, when $m=-2$ and the two values of r differ by an integer, the second solution may contain a logarithmic term as in the usual method of Frobenius. Since these solutions may in principle be asymptotic series in z^{-i} they must be truncated and there will be a radius R_{∞} such that these truncated solutions will have the desired numerical accuracy for $|z|>R_{\infty}$.

Having extended our solution u_{1} to some point z_{1} with $\left|z_{1}\right|>R_{\infty}$ we may determine the connection coefficients from the equations

$$
\begin{align*}
& u_{1}\left(E, z_{1}\right)=C^{+}(E) u^{+}\left(E, z_{1}\right)+C^{-}(E) u^{-}\left(E, z_{1}\right) \\
& u^{\prime}\left(E, z_{1}\right)=C^{+}(E) u^{+}\left(E, z_{1}\right)+C^{-}(E) u^{-\prime}\left(E, z_{1}\right) \tag{9}
\end{align*}
$$

Table 1. Asymptotic solutions for $u^{\prime \prime}+q(z) u=0$ with $q(z) \asymp z^{\prime \prime} \sum_{i=0}^{\infty} q_{i} z^{-i}, q_{0} \neq 0$.

m	$u(z)$
$2 n \quad(n \geqslant 0)$	$\exp \left(\sum_{j=0}^{n} s_{j} z^{n-i+1}\right) z^{-r} \sum_{i=0}^{\infty} c_{i} z^{-i}$
$2 n+1 \quad(n \geqslant-1)$	$\exp \left(\sum_{j=0}^{2 n+2} s_{j} z^{(n-j+2) / 2}\right) z^{-r} \sum_{i=0}^{\infty} c_{i} z^{-1 / 2}$
-2	$z^{-r} \sum_{i=0}^{\infty} c_{i} z^{-i}$
$-n$	$(n \geqslant 3)$

Note that the solutions $u_{1}^{\prime}, u^{+\prime}$ and $u^{-\prime}$ are derivatives with respect to the variable z and can easily be obtained by differentiating the appropriate polynomial solutions.

Obtaining the coefficients C^{+}and C^{-}to the required accuracy from (9) completes the problem in those cases where u^{+}and u^{-}are both admissible solutions. This occurs, for example, in potential scattering problems in quantum mechanics where u^{+}and u^{-} are sinusoidal functions. Obtaining C^{+}and C^{-}in these cases is then equivalent to finding the amplitude and phase of the scattered wavefunction, the quantities of physical interest.

However, if, for example, u^{+}is unbounded at infinity, then we must proceed further and determine the values of E such that $C^{+}(E)$ vanishes. The problem we now consider is that of finding a sequence of values of E that converges to the desired root efficiently and accurately.

Treating this problem as one of finding the zeros of the function $C^{+}(E)$, we propose to use Newton's method so that an approximate root E is obtained by the following iteration

$$
\begin{equation*}
E \leftarrow E-\frac{C^{+}(E)}{\mathrm{D}_{E} C^{+}(E)} \tag{10}
\end{equation*}
$$

where D_{E} represents differentiation with respect to E.
The local rate of convergence of Newton's method is quadratic and thus gives an efficient method provided we can determine $\mathrm{D}_{E} C^{+}(E)$ to high accuracy. This can be done in a straightforward manner as we show below.

Let us differentiate (9) with respect to E to yield

$$
\begin{align*}
& \mathrm{D}_{E} u_{1}=C^{+}\left(\mathrm{D}_{E} u^{+}\right)+C^{-}\left(\mathrm{D}_{E} u^{-}\right)+\left(\mathrm{D}_{E} C^{+}\right) u^{+}+\left(\mathrm{D}_{E} C^{-}\right) u^{-} \\
& \mathrm{D}_{E} u_{1}^{\prime}=C^{+}\left(\mathrm{D}_{E} u^{+\prime}\right)+C^{-}\left(\mathrm{D}_{E} u^{-\prime}\right)+\left(\mathrm{D}_{E} C^{+}\right) u^{+\prime}+\left(\mathrm{D}_{E} C^{-}\right) u^{-\prime} . \tag{11}
\end{align*}
$$

Then (9) and (11) represent two sets of two equations in the two pairs of unknowns C^{+}, C^{-}and $\mathrm{D}_{E} C^{+}, \mathrm{D}_{E} C^{-}$, since the functions $\mathrm{D}_{E} u_{1}, \mathrm{D}_{E} u_{1}^{\prime}, \mathrm{D}_{E} u^{-}, \mathrm{D}_{E} u^{-1}, \mathrm{D}_{E} u^{+}$, $\mathrm{D}_{E} u^{+\prime}$ can be found by differentiating with respect to E the corresponding series solution for the functions and their derivatives with respect to z. Because the coefficients of the series solutions depend on E their derivatives with respect to E can be found by differentiating the corresponding recurrence relation. Thus, for example, from (6) we get

$$
\mathrm{D}_{E} u_{1}=\sum_{i=0}^{\infty}\left(\mathrm{D}_{E} b_{i}\right)\left(z-z_{0}\right)^{i+r} .
$$

Hence (9) and (11) can be solved for C^{+}and $\mathrm{D}_{E} C^{+}$, say, and then Newton's method (10) employed to find the desired value of E to high accuracy.

We illustrate this method with specific examples in the next section.

3. Examples of the use of the asymptotic shooting method

In this section we present four examples which are based on differential equations that arise in quantum mechanical potential problems.

Given a spherically symmetric potential $V(z)$ the Schrödinger equation containing this potential can be reduced to the radial form (in atomic units)

$$
\begin{equation*}
z^{2} u^{\prime \prime}-\left[l(l+1)+2 z^{2} V(z)-2 E z^{2}\right] u=0 \tag{12}
\end{equation*}
$$

where l is the angular momentum quantum number which takes non-negative integer values and E is the energy eigenvalue to be determined.

We will now treat the problem of solving (12) for four different potentials.

3.1. The perturbed spherical oscillator potential, $A z^{-2}+2 z^{2}$

As a check on our method, we found the eigenvalues of equation (12) for this potential. Equation (12) becomes

$$
\begin{equation*}
z^{2} u^{\prime \prime}-\left[s(s+1)-2 E z^{2}+4 z^{4}\right] u=0 \tag{13}
\end{equation*}
$$

where s is the positive root of $s(s+1)=l(l+1)+2 A$. Equation (13) has a known solution (Landau and Lifshitz 1965)

$$
\begin{equation*}
u=\mathrm{e}^{-z^{2}} z^{s+1} F\left(-\frac{E-2 s-3}{4}, s+\frac{3}{2}, 2 z^{2}\right) \tag{14}
\end{equation*}
$$

where F is the confluent hypergeometric function, and in order that $u \rightarrow 0$ as $z \rightarrow \infty$ we must have $E=4 n+2 s+3$ where n is a non-negative integer. In this case, the confluent hypergeometric function in (14) becomes the (generalised) Laguerre polynomial of degree n in z^{2}, i.e. $\left[n!/\left(s+\frac{3}{2}\right)_{n}\right] L_{n}^{(s+1 / 2)}\left(2 z^{2}\right)$, where we have used Pochhammer's notation $(x)_{n}=x(x+1) \ldots(x+n-1)$ and $(x)_{0}=1$.

A solution regular at the origin has the form (5) with $r=s+1$ and

$$
a_{i}=\frac{-2 E a_{i-2}+4 a_{i-4}}{i(i+2 s+1)} \quad a_{0}=1
$$

(we use the convention that $a_{i}=0$ if $i<0$). Hence $a_{i}=0, i$ odd, and

$$
\mathrm{D}_{E} a_{i}=\frac{-2 a_{i-2}-2 E \mathrm{D}_{E} a_{i-2}+4 \mathrm{D}_{E} a_{i-4}}{i(i+2 s+1)} \quad \mathrm{D}_{E} a_{0}=0
$$

Thus both sets of coefficients a_{i} and $\mathrm{D}_{E} a_{i}$ can be found from the above recurrence relations. Now $u\left(z_{0}\right), u^{\prime}\left(z_{0}\right), \mathrm{D}_{E} u\left(z_{0}\right)$ and $\mathrm{D}_{\mathrm{E}} u^{\prime}\left(z_{0}\right)$ can be evaluated from (5) and its derivative with respect to E and then we expand u as in (6). We find that

$$
\begin{aligned}
b_{i+2}=[-(i+1) & (i+2 s+2) b_{i+1}+z_{0}\left(-2 E+4 z_{0}^{2}\right) b_{i} \\
& \left.+\left(-2 E+12 z_{0}^{2}\right) b_{i-1}+12 z_{0} b_{i-2}+4 b_{i-3}\right] /\left[z_{0}(i+1)(i+2)\right]
\end{aligned}
$$

where $i \geqslant 0$ and

$$
\begin{aligned}
& \mathrm{D}_{E} b_{i+2}=\left[-(i+1)(i+2 s+2) \mathrm{D}_{E} b_{i+1}-2 z_{0} b_{i}+z_{0}\left(-2 E+4 z_{0}^{2}\right) \mathrm{D}_{E} b_{i}\right. \\
& \quad-2 b_{i-1}+\left(-2 E+12 z_{0}\right) \mathrm{D}_{E} b_{i-1} \\
& \left.+12 z_{0} \mathrm{D}_{E} b_{i-2}+4 \mathrm{D}_{E} b_{i-3}\right] /\left[z_{0}(i+1)(i+2)\right] \quad i \geqslant 0
\end{aligned} \quad \begin{aligned}
& b_{0}=f\left(z_{0}\right) \quad f^{\prime}\left(z_{0}\right) \\
& \mathrm{D}_{E} b_{0}=\mathrm{D}_{E} f\left(z_{0}\right) \quad \quad \mathrm{D}_{E} b_{1}=\mathrm{D}_{E} f^{\prime}\left(z_{0}\right)
\end{aligned}
$$

where f is defined in (6). Again the sets of coefficients b_{i} and $D_{E} b_{i}$ can be found from the above relations and the analytic continuation then proceeds as described above.

For this potential the value of m in (8) is 2 . Hence from table 1 the asymptotic solutions are given by

$$
\begin{equation*}
u^{ \pm}=\mathrm{e}^{ \pm z^{2}} \sum_{i=0}^{\infty} A_{i}^{ \pm} z^{r_{ \pm}-i} \tag{15}
\end{equation*}
$$

where $r_{ \pm}=\mp E / 2-\frac{1}{2}$ and
$A_{i}^{ \pm}= \pm\left[\left(r_{ \pm}-i+2\right)\left(r_{ \pm}-i+1\right)-s(s+1)\right] A_{i-2}^{ \pm} /(4 i)$
$\mathrm{D}_{E} A_{i}^{ \pm}=\left[\left(r_{ \pm}-i+\frac{3}{2}\right) A_{i-2}^{ \pm} \pm\left[\left(r_{ \pm}-i+2\right)\left(r_{ \pm}-i+1\right)-s(s+1)\right] \mathrm{D}_{E} A_{i-2}^{ \pm}\right] /(4 i) \quad i \geqslant 2$
$A_{0}^{ \pm}=1 \quad A_{1}^{ \pm}=0 \quad \mathrm{D}_{E} A_{0}^{ \pm}=0 \quad \mathrm{D}_{E} A_{1}^{ \pm}=0$.
Substituting $A_{i}^{ \pm}$in (15) gives $u^{ \pm}$, and $\mathrm{D}_{E} u^{ \pm}$may be obtained from

$$
\begin{equation*}
\mathrm{D}_{E} u^{ \pm}=\mp \frac{1}{2}(\ln z) u^{ \pm}+\mathrm{e}^{ \pm z^{2}} \sum_{i=0}^{\infty} \mathrm{D}_{E} A_{i}^{ \pm} z^{r_{ \pm}-i} \tag{16}
\end{equation*}
$$

$u^{\prime \pm}$ and $\mathrm{D}_{E} u^{\prime \pm}$ are obtained by differentiating (15) and (16). Having these, we solve (9) and (11) for C^{+}and $\mathrm{D}_{E} C^{+}$. Iteration (10) then gives us a new estimate of E and the process is repeated until $\left|C^{+} / \mathrm{D}_{E} C^{+}\right|$is less than a preset tolerance.

3.2. The Kratzer's molecular potential, $\mathrm{Ar}^{-2}+\mathrm{Br}^{-1}$

This is another case which has a known solution (Kratzer 1920, Fues 1926). Equation (12) may be transformed into

$$
\begin{equation*}
z^{2} u^{\prime \prime}-\left[s(s+1)-\varepsilon z+\frac{1}{4} z^{2}\right] u=0 \tag{17}
\end{equation*}
$$

by the substitutions $z=2 \sqrt{-2 E} r, \varepsilon=-B / \sqrt{-2 E}, \quad s(s+1)=l(l+1)+2 A, \quad s>0$. Equation (17) has the solution (see e.g. Landau and Lifshitz 1965)

$$
\begin{equation*}
u=z^{s+1} \mathrm{e}^{-z / 2} F(-\varepsilon+s+1,2 s+2, z) \tag{18}
\end{equation*}
$$

and $\varepsilon-s-1=n$, say, must be a non-negative integer if u is to be bounded at infinity, in which case the confluent hypergeometric function reduces to the Laguerre polynomial $\left[n!/(2 s+2)_{n}\right] L_{n}^{(2 s+1)}(z)$.

The solution regular at the origin is given by (5) with $r=s+1$ and

$$
\begin{equation*}
a_{i+1}=\frac{a_{i-1}-4 \varepsilon a_{i}}{4(i+1)(i+2 s+2)} \quad a_{0}=1 . \tag{19}
\end{equation*}
$$

The coefficients b_{i} for the analytic continuation (6) are given by

$$
\begin{equation*}
b_{i+2}=\frac{b_{i-1}-\left(4 \varepsilon-z_{0}\right) b_{i}-4(i+1)(i+2 s+2) b_{i+1}}{4 z_{0}(i+1)(i+2)} \tag{20}
\end{equation*}
$$

The expressions for $\mathrm{D}_{\varepsilon} a_{i}$ and $\mathrm{D}_{\varepsilon} b_{i}$ can be easily obtained from (19) and (20). In this case, the value of m in (8) is zero and the asymptotic expansion (obtained from table 1) is

$$
\begin{equation*}
u^{ \pm}=\mathrm{e}^{ \pm z / 2} \sum_{i=0}^{\infty} A_{i}^{ \pm} z^{ \pm \varepsilon-i} \tag{21}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{i+1}^{ \pm}= \pm\left[\frac{(i \pm \varepsilon)(i \pm \varepsilon+1)-s(s+1)}{i+1}\right] A_{i}^{ \pm} \tag{22}
\end{equation*}
$$

Hence we may find $D_{\varepsilon} A_{i}^{ \pm}$and proceed as above to determine the eigenvalue ε.

3.3. The screened Coulomb potential

Here we will find accurate energy eigenvalues of the screened Coulomb potential (as it is known in atomic physics; in nuclear physics it is called the Yukawa potential (Yukawa 1935) and in plasma physics the Debye-Hückel potential (Debye and Hückel 1923))

$$
\begin{equation*}
V(z)=-z^{-1} \exp (-a z) \tag{23}
\end{equation*}
$$

where a is a given parameter. For convenience we write $E=-s^{2} / 2$. Thus substituting (23) into (12) we get

$$
\begin{equation*}
z^{2} u^{\prime \prime}+\left[2 z \exp (-a z)-s^{2} z^{2}-l(l+1)\right] u=0 \tag{24}
\end{equation*}
$$

Expanding the exponential in a power series we can find a regular Frobenius solution of the form (5) with $r=l+1$ (since u must be zero at the origin) and

$$
\begin{equation*}
a_{i+1}=\left(s^{2} a_{i-1}-\sum_{j=0}^{i}\left[2(-a)^{j} / j!\right] a_{i-j}\right)[(i+1)(i+2 l+2)]^{-1} \quad a_{0}=1 \tag{25}
\end{equation*}
$$

Extending these solutions analytically we have from (6)

$$
\begin{align*}
b_{i+2}=-((i+2 l & \left.+2)(i+1) b_{i+1}+\exp \left(-a z_{0}\right) \sum_{j=0}^{i}\left[2(-a)^{j} / j!\right] b_{i-j}-s^{2} z_{0} b_{i}-s^{2} b_{i-1}\right) \\
\times & \times\left((i+1)(i+2) z_{0}\right]^{-1} . \tag{26}
\end{align*}
$$

The coefficients $\mathrm{D}_{s} a_{i}$ and $\mathrm{D}_{s} b_{i}$ can be easily obtained from (25) and (26).
At this point we must calculate two independent asymptotic solutions to (24) which in this case are simply

$$
\begin{equation*}
u^{+}=\exp (s z) \quad \text { and } \quad u^{-}=\exp (-s z) \tag{27}
\end{equation*}
$$

neglecting the contribution of the exponential term in the ode.
For this problem we require u to remain bounded at infinity, which implies that $C^{+}(s)$ must vanish. Hence we may employ the algorithm (10) to find the values of s which satisfy this condition. Having found s we have then found the energy eigenvalues $E=-s^{2} / 2$.

3.4. The three-dimensional quartic oscillator

In this case the potential is taken as $V(z)=z^{4}$ so that the differential equation (12) becomes

$$
\begin{equation*}
z^{2} u^{\prime \prime}-\left[l(l+1)+2 z^{6}-2 z^{2} E\right] u=0 . \tag{28}
\end{equation*}
$$

This has a regular solution at the origin of the form (5) with $r=l+1, a_{0}=1$ and

$$
\begin{equation*}
a_{i}=\left[2 a_{i-6}-2 E a_{i-2}\right] /[i(2 l+i+1)] . \tag{29}
\end{equation*}
$$

Continuing the solution analytically as in (6) we have

$$
\begin{align*}
b_{i+2}=-\left[b_{i+1}(\right. & +1)(i+2 l+2)+b_{i}\left(2 E z_{0}-2 z_{0}^{5}\right)+b_{i-1}\left(2 E-10 z_{0}^{4}\right)+b_{i-2}\left(-20 z_{0}^{3}\right) \\
& \left.+b_{i-3}\left(-20 z_{0}^{2}\right)+b_{i-4}\left(-10 z_{0}\right)-2 b_{i-5}\right] /\left[z_{0}(i+1)(i+2)\right] \tag{30}
\end{align*}
$$

Thus we may extend the functions $u, u^{\prime}, \mathrm{D}_{E} u, \mathrm{D}_{E} u^{\prime}$ into the asymptotic region.

By comparing (28) with (7) and (8) we see that the exponent in (8) equals 4 so that using table 1 and substituting into (28) we find the asymptotic solutions to be

$$
\begin{equation*}
u^{ \pm}=\exp \left(\pm 2^{1 / 2} 3^{-1} z^{3}\right) \sum_{i=0}^{\infty} A_{i}^{ \pm} z^{-i-1} \tag{31}
\end{equation*}
$$

with $\boldsymbol{A}_{0}^{ \pm}=1$ and

$$
\begin{equation*}
A_{i+1}^{ \pm}= \pm\left[2 E A_{i}^{ \pm}+[i(i-1)-l(l+1)] A_{i-2}^{ \pm}\right] /\left[(i+1) 8^{1 / 2}\right] \tag{32}
\end{equation*}
$$

and we may proceed to find E as in the other examples.

4. Results

In this section we discuss the details of the calculations for the examples in section 3 and present numerical results. In the first two examples the eigenvalues are known exactly, so we have used these to test the efficiency of the method. For the last two examples we have presented extensive tables of what we believe to be the most accurate determination to date of the eigenvalues for these potentials.

In all of the examples below, we used a constant step size between values of z_{0} in the analytic continuation which was equal to the value of z_{0} in (5). All calculations were carried out in quadruple precision on VAX and IBM computers. The CPU times quoted all refer to execution on a VAX 8600.

4.1. The perturbed spherical oscillator potential, $A z^{-2}+2 z^{2}$

We performed these calculations for $A=0.05,0.5$ and 10 , each for two different eigenvalues E. In each case we were able to obtain the exact eigenvalue correct to 31 significant figures provided that the step size was sufficiently small (~ 0.1) and the number of terms in the Frobenius and analytic continuation series were sufficiently large (~ 30 in both cases). If these conditions were not met, the sequence of eigenvalues converged to an incorrect answer.

When E has the value $4 n+2 s+3$, then our method will produce the exact solution in the asymptotic region (for this particular potential) if $2 n$ terms are used in the asymptotic expansion. In practice, we found that, with an initial estimate of E within 1% of its exact value, the procedure would converge (to 31 significant figures) in about 10 iterations on E when z_{1} was taken equal to z_{0}, the point at which the Frobenius series was evaluated. In order to test the validity of the method, we used values of z_{1} in the region of $10-20$. In this case, it was possible to use as few as 2 or 3 terms in the asymptotic expansion and still obtain an answer correct to 31 significant figures. When $A=0.05$ and $z_{1}=20$, with 30 terms in all the expansions and a step size of 0.1 , each iteration on E took about 2.8 seconds of CPU time.

4.2. The Kratzer's molecular potential, $\mathrm{Ar}^{-2}+\mathrm{Br}^{-1}$

This potential was investigated for a variety of values of s and ε. In this case we again needed a step size of the order of 0.1 to achieve 31 significant figure accuracy, but only about 20 terms were required in the Frobenius and analytic continuation series.

When $\varepsilon=n+s+1$ and n terms were retained in the asymptotic expansion, (21) again gave the exact solution, and so any $z_{1} \geqslant z_{0}$ could be used. However, we found
here that the coefficients A_{i} in (21) increased faster than 10^{i}, which meant that z_{1} needed to be prohibitively large if we were to use fewer than the exact number of terms in the asymptotic expansion. Using more than the exact number of terms also made the results worse, as expected from the nature of the asymptotic expansion.

For $s=0.7$ and $n=15, z_{1}$ had to be 120 in order to obtain an accuracy of 30 significant figures if the asymptotic expansion had 14 instead of the exact 15 terms. In this case, the CPU time required was about 5 seconds per iteration.

4.3. The screened Coulomb potential

We have performed these calculations for $l=0$ retaining 25 terms in the series (5) and (6) and taking successive points z_{0} along the positive real axis in steps of 0.125 , with $z_{1}=70$. In order to ensure that the procedure was converging to the correct eigenvalue, we varied z_{1}, the step size, and the number of terms in (5) and (6) until no change in the energy eigenvalue was obtained in the first 31 figures when these were changed. In this case it was necessary to take such a large value of z_{1} in order that the neglect of the exponential term in the asymptotic region not affect the result. We would like to point out that this requirement for large values of z_{1} holds generally for short-range, i.e. exponentially decaying, potentials. Thus the present method is more efficient for long-range (inverse-power) potentials than for short-range ones since in the former case we have asymptotic solutions.

For $l=1$ and $l=2$ it was necessary to use even larger values of $z_{1}(\sim 135-200)$ to obtain the desired accuracy, and the problem became worse as s decreased. This is presumably due in the main to the neglect (in the asymptotic form) of the exponential term in (24) with respect to $s^{2} z$, an approximation which requires larger values of z as s decreases.

The results for the lowest energy eigenvalue when $a=1$ are shown in table 2, where we show the convergence of the iterations and the values for the connection coefficient C^{+}. Table 3 shows our values for the energy eigenvalues for the $1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}, 2 \mathrm{p}, 3 \mathrm{p}$ and 3d states for a selection of values of the screening parameter chosen in order to make comparisons with other calculations. We have compared our results with those of Rogers et al (1970), who integrated the differential equation numerically, with the results of Lam and Varshni (1979) and Gerry and Laub (1985) who used variational methods, and with those of Vrscay (1986) who used perturbation theory. Our results agree with those of Rogers et al, and with those of Lam and Varshni. We disagree in the last two or three digits with Gerry and Laub, but agree with the more precise results of Vrscay except for the last one or two digits in three cases. (Rogers et al show a 3s eigenvalue for $a=\frac{1}{7}$, but this is clearly a misprint since $1 / a$ is less than their value of 7.171 for the critical screening length.) CPU time for the $3 \mathrm{~d}, a=0.08$ case was about

Table 2. Convergence of the iterations for the ground state of the Debye potential with $a=1$.

E (energy in atomic units)	$C^{+}(E)$
0.0103	$0.16708825727754487001084257334795 \mathrm{E}-03$
0.0102857805006269769914271097962276	$-0.11170514107705024442887336180599 \mathrm{E}-06$
0.0102857899900134618173460106336786	$-0.498524647747527578845004044 \mathrm{E}-13$
0.0102857899900176968047742144714263	$-0.99291954168024 \mathrm{E}-26$
0.0102857899900176968047742153149156	$0.12016042 \mathrm{E}-33$
0.0102857899900176968047742153149156	

Table 3. Eigenvalues for the Debye potential.

Screening constant	Energy (atomic units)
1 s states	
0.10 D-08	0.4999999900000000749999995000000
0.002	0.4980029960109581923297505995650
0.005	0.4950186879256325306674683291517
0.01	0.4900745067466941718092082523330
1/70	0.4858659170905626300360739018390
0.02	0.4802961059837850845531675687076
0.025	0.4754611939298868258726236648661
1/30	0.4674822800490660815676709885896
0.05	0.4518164285245055438562170757554
1/60	0.4365305967497793338249584117690
0.10	0.4070580306134031567545070703611
1/7	0.3712183390725104156678396183865
0.20	0.3268085113691933848824954192818
0.25	0.2909195875212743397520380131011
0.30	0.2576385863030541488789640693062
1/3	0.2368326702696054262829569803449
0.40	0.1983760833618502166084138599259
0.50	0.1481170218899326167117582207255
0.60	0.1061359075058141930007386938110
0.70	0.07183355590451221304026212680238
5/7	0.06752959503288132127745677884431
0.80	0.04470430449735966320034876624037
0.90	0.02431419382750205488738415088719
1.00	0.01028578999001769680477421531492
1.10	0.002287244234053485463476080685041
1.15	0.000455889021355957785682927445887
1.16	0.000258622006376600045257206291145
1.17	0.000117073729761480412255495394286
1.18	0.000030985910874039344565231310402
1.19	0.00000010303196149898458855554247515
2 s states	
$0.10 \mathrm{D}-08$	0.1249999900000002999999930000000
0.002	0.1230119444781344406208500316153
0.005	0.1200741433455985226110203936297
0.01	0.1152932851679942562220455161704
1/70	0.1113072821108057188223706122714
0.020	0.1061483202446955032507083411859
0.025	0.1017759030969827130880919273533
0.03	0.0975317861346608627700390609202
1/30	0.0947719119876076113151641853893
0.04	0.0894146341851591884157146210254
0.05	0.0817711957952531241734894137704
0.06	0.0745785344127097096948851711592
1/60	0.0700235605802752265690895119051
0.07	0.0678159599814621812228103633106
0.08	0.0614646562123003859114662511134
0.09	0.0555073885532907363947989780736
0.01	0.049928271331918889234996681037
1/7	0.029969939257143878404743800
0.15	0.02722219072568851825018727

Table 3. (continued)

Screening constant	Energy (atomic units)
2 s states	
0.20	0.01210786519544046438585
0.25	0.0033959062832393077964
0.30	0.000091602443891898904
0.31	0.00000003799256572403

3 s states

$0.10 \mathrm{D}-08$	0.055555554555555562306
$0.20 \mathrm{D}-02$	0.053582284478315489495
$0.50 \mathrm{D}-02$	0.050720178473178174475
$0.10 \mathrm{D}-01$	0.046198857799033191519
$1 / 70$	0.042557959016724088371
$0.20 \mathrm{D}-01$	0.03802001439301736413
$0.25 \mathrm{D}-01$	0.03432950991154377544
$1 / 30$	0.0287215904921952190
$0.50 \mathrm{D}-01$	0.01935255481475234
$1 / 60$	0.012157785987924
$0.10 \mathrm{D}+00$	0.00320804674469

2 p states

$0.20 \mathrm{D}-02$	0.1230099603754594837647289149273
$0.50 \mathrm{D}-02$	0.1200618894098352742447671760726
$0.10 \mathrm{D}-01$	0.1152452240905641858947832163359
$1 / 70$	0.1112108241860778177038800300728
$0.20 \mathrm{D}-01$	0.1059633981799399047557310280371
$0.25 \mathrm{D}-01$	0.1014924635707843344952606364444
$0.30 \mathrm{D}-01$	0.09713136679569131067178388921414
$1 / 30$	0.09428381221127949649400893341774
$0.40 \mathrm{D}-01$	0.08872937358287952628793914146760
$0.50 \mathrm{D}-01$	0.08074038703778460971210274361007
$0.60 \mathrm{D}-01$	0.07314961938586062502380541842083
$1 / 15$	0.06830390338894410208029490566565
$0.70 \mathrm{D}-01$	0.06594417699615657338456051665178
$0.80 \mathrm{D}-01$	0.05911280478703123463569233292776
$0.90 \mathrm{D}-01$	0.05264570133158427446357690619828
$0.10 \mathrm{D}+00$	0.04653439048672460838660084039537
$1 / 7$	0.02422526522056656148247314468442
$0.15 \mathrm{D}+00$	0.02110488892773624291694338296143
$0.20 \mathrm{D}+00$	0.00410164653078409038844661
$0.21 \mathrm{D}+00$	0.001808760066281795366987
$0.22 \mathrm{D}+00$	0.00002869724498522983

$3 p$ states

$0.20 \mathrm{D}-02$	0.05358032003141963278849551471751
$0.50 \mathrm{D}-02$	0.05070822417583921479059630236771
$0.01 \mathrm{D}-01$	0.04615310482916228731527387868240
$1 / 70$	0.04246803431729905910192545527501
$0.20 \mathrm{D}-01$	0.03785238920022317632656801759123
$0.25 \mathrm{D}-01$	0.03407891042893813054846316221741
$1 / 30$	0.02830815624552539979406208673419

Table 3. (continued)

Screening constant	Energy (atomic units)
3p states	
$0.50 \mathrm{D}-01$	0.01855775188340599660489399388409
$1 / 15$	0.01097320662096391422413453827
$0.80 \mathrm{D}-01$	0.0063299954392681132693381
$0.10 \mathrm{D}+00$	0.001589001525867560
3 d states	
$0.20 \mathrm{D}-02$	0.05357639087613682981501730459099
$0.50 \mathrm{D}-02$	0.05068430583285258643962739333932
$0.10 \mathrm{D}-01$	0.04606145416065962713813027771671
$1 / 70$	0.04228761816065432694277864396737
$0.20 \mathrm{D}-01$	0.03751512770068693031343843249028
$0.25 \mathrm{D}-01$	0.03357312208666600310296509094285
$1 / 30$	0.02746829737841047896886494797870
$0.50 \mathrm{D}-01$	0.01691557056981584288611475824358
$1 / 15$	0.00847655709926629585641897
$0.80 \mathrm{D}-01$	0.0032483604287519935725

35 seconds per iteration, the larger time being due partly to the greater complexity of the recursion relation (26) and partly to the larger z_{1} required.

As a further check on our method and computer program, we also calculated the ground-state energy eigenvalue for this potential with $a=0$. This corresponds to the potential for the hydrogen atom with a known lowest energy of -0.5 . The convergence of our method to this result is shown in table 4.

4.4. The three-dimensional quartic oscillator

In table 5 we present to 10 decimal places the results of applying our method to the three-dimensional quartic oscillator. In this case, the step size required was about $\frac{1}{16}$, 25 terms were kept in the three series expansions, and $z_{1}=10$. These same energy levels were calculated by Bell et al (1970). Some of their results differ from ours in the last

Table 4. Convergence for the 1 s-eigenvalue of H.

n	$E_{1 \mathrm{~s}}^{(n)}$
0	0.8
1	0.602116129526180714424611728441021 E 0
2	0.521543732140591483130662376439319 E 0
3	0.501418490320542520969252083905473 E 0
4	0.500006970533708686781484215311404 E 0
5	0.500000000169908547629803838297194 EO
6	0.500000000000000000100956388597809 E 0
7	0.500000000000000000000000000000000 EO
8	0.500000000000000000000000000000000 E 0

Table 5. Energy levels for the three-dimensional quartic oscillator.

| $l=0$ | $l=2$ | $l=6$ | $l=8$ | |
| :--- | ---: | :--- | :--- | :--- | :--- |
| | $l=2$ | | | |
| 2.3936440165 | | | | |
| 7.3357299952 | 6.8303079343 | | | |
| 13.3793365526 | 13.0045629546 | 12.1590171827 | | |
| 20.2208494641 | 19.9159730182 | 19.2175804827 | 18.1524107220 | |
| 27.7063934428 | 27.4459404834 | 26.8452044181 | 25.9194034704 | 24.6888626637 |
| 35.7403152687 | 35.5109999239 | 34.9801515383 | 34.1572453491 | 33.0555566553 |
| 44.2562353991 | 44.0501631717 | 43.5720887950 | 42.8283233243 | 41.8279764782 |
| 53.2048697903 | 53.0169264855 | 52.5803058788 | 51.8994339985 | 50.9808266215 |
| 62.5479027731 | 62.3745650381 | 61.9714967835 | 61.3419300382 | 60.4906880954 |
| 72.2545302857 | 72.0932561714 | 71.7179897838 | 71.1311689231 | 70.3364674332 |
| 82.2993462091 | 82.1482347944 | 81.7964435368 | 81.2458604888 | 80.4993517640 |
| 92.6609700020 | 92.5185582955 | 92.1868973170 | 91.6674818746 | 90.9625937254 |
| 103.3211130984 | 103.1862483315 | 102.8720731865 | 102.3797933067 | 101.7112570052 |
| 114.2639196068 | 114.1356754374 | 113.8368555950 | 113.3684480443 | 112.7319725768 |
| 125.4754862275 | 125.3531057769 | 125.0678969118 | 124.6206803910 | 124.0127222827 |
| 136.9435035995 | 136.8263595587 | 136.5533135921 | 136.1250557519 | 135.5426528896 |
| 148.6569824740 | 148.5445484423 | 148.2824486155 | 147.8712692886 | 147.3119185964 |
| 160.6060407070 | 160.4978701413 | 160.2456831513 | 159.8499825414 | 159.3115483465 |
| 172.7817348482 | 172.6774453007 | 172.4342853507 | 172.0526898044 | 171.5333341001 |
| 185.1759250767 | 185.0751861905 | 184.8402875415 | 184.4716079527 | 183.9697365625 |
| 197.7811655062 | 197.6836897329 | 197.4563854348 | 197.0995848925 | 196.6138053655 |
| 210.5906140858 | 210.4961494117 | 210.2758546041 | 209.9300229081 | 209.4591112007 |
| 223.5979578483 | 223.5062820228 | 223.2924806677 | 222.9568140242 | 222.4996878473 |
| 236.7973503223 | 236.7082662301 | 236.5005004553 | 236.1742851305 | 235.7299824185 |
| 250.1833586971 | 250.0966906080 | 249.8945520647 | 249.5771510991 | 249.1448124575 |

$l=1 \quad l=3 \quad l=5 \quad l=9$
4.4780392195
10.0999444196
16.5995208829 23.7962174000 31.5780822101 39.8690116424 48.6135040474 57.7690209219 57.7690209219 67.3017502756 77.1840611337 87.3928765917 97.9085820791 108.7142634711 119.7951579833 131.1382476231 142.7319512370 154.5658866217 166.6306836070 178.9178349802 191.4195760168 204.1287859790 217.0389067264 230.1438748284 243.4380644504 256.9162389286
9.4011601558 16.0461933512 23.3314732297 31.1735577445 39.5084574052 48.2866838314 57.4690340946 57.4690340946 67.0237033177 76.9243452677 87.1487462185 97.6778945885 108.4953111856 119.5865554511 130.9388536015 142.5408132111 154.3822004208 166.4537634067 178.7470906177 191.2544955635 203.9689221606 216.8838662069 229.9933096560 243.2916651577 256.7737289146
15.0816468644 22.5110459192 30.4547950124 38.8654277166 47.7024560222 56.9319410022 56.9319410022 66.5253513821 76.4584827343 86.7105825343 97.2636713633 108.1020207575 119.2117499250 130.5805114644 142.1972437978 154.0519739743 166.1356588813 178.4400560554 190.9576175521 203.6814019714 216.6050009190 229.7224770587 243.0283115522 256.5173591656
21.3583103637
29.4361692419 37.9493639779 46.8673556740 56.1624585844 56.1624585844 65.8102164134 75.7891773340 86.0805098331 96.6676142934 107.5357785778 118.6718871430 130.0641800064 141.7020542288 153.5759003794 165.6769673591 177.9972501063 190.5293957729 203.2666248581 216.2026645128 229.3316917998 242.6482851474 256.1473825836
28.1354028602 367724086595 45.7900238173 55.1669437081 55.1669437081 64.8831096650 74.9201597422 85.2614814077 95.8921032843 106.7985323128 117.9685826501 129.3912152455 141.0563946744 152.9549643504 165.0785389717 177.4194122533 189.9704778517 202.7251611566 215.6773627366 228.8214043921 242.1519891628 255.6641616427
one or two decimal places (see also footnote, table 3, Mathews et al 1982, who calculated some of the same values).

We also present in table 6 a more accurate determination of the $n=24, l=1$ eigenvalue, using a step size of $\frac{1}{32}$, and compare it with previous work by Bell et al (1970), Mathews et al (1982) and Killingbeck (1982). Approximate CPU time per iteration for this case was about 3.9 seconds.

Table 6. Comparison of results for the $E(n=24, l=1)$ eigenvalue (quartic oscillator).

E (energy in atomic units)	Source
256.916220	Bell et al (1970) (variational method)
256.916238	Mathews et al (1982) (perturbation theory)
256.916239	Killingbeck (1982) (the finite-difference method)
256.9162389286070257212079664048	present work

Hodgson (1988) has calculated eigenenergies of the equation

$$
\begin{equation*}
-\Psi^{\prime \prime}+x^{4} \Psi=E_{H} \Psi \quad \Psi(0)=c \quad \Psi^{\prime}(0)=0 \tag{33}
\end{equation*}
$$

where c is an arbitrary normalisation constant, to 32 significant figures. Putting $l=1$ in (28) and $z=x \times 2^{1 / 6}$, we obtain (33) with $E_{H}=2^{2 / 3} E$. We have run this case with the same step size and number of terms as above, and obtain full agreement with Hodgson's results using $z_{1}=6$ in the case where Hodgson used the boundary condition $\Psi(8)=0$.

5. Conclusions

In this paper we have presented a method for finding analytic approximations of arbitrary accuracy for ordinary differential equations over a semi-infinite interval. More importantly, the method produces eigenvalues of the ODE, again to arbitrary accuracy. We have tested this method on four different ODEs and have reported eigenvalues for the screened Coulomb potential and quartic oscillator and which are the most accurate to date.

It is of interest to compare our work with that of Hodgson (1988) who used a similar method to find eigenvalues of the harmonic and quartic oscillators. Whereas Hodgson used the secant method to generate successive approximations to the eigenvalue, we use Newton's method which is known to converge more quickly. On the other hand, our method requires the calculation of the derivatives of the polynomial coefficients with respect to the eigenvalues, which approximately doubles the amount of calculation per iteration.

In addition, Hodgson calculates the eigenvalue by requiring $u\left(z_{1}\right)=0$. This requires a sufficiently large z_{1} to satisfy this condition to the degree of accuracy required for the eigenvalue. In our method we determine the eigenvalue by matching onto the exact asymptotic form, which requires a z_{1} only large enough for this asymptotic form to be within the desired accuracy. Thus we were able to use $z_{1}=6$ to obtain the same accuracy on the quartic oscillator as Hodgson obtained with $z_{1}=8$. This is a particularly favourable example for Hodgson's method since from (31) $u \propto \exp \left(-2^{1 / 2} 3^{-1} z^{3}\right)$ and
hence decreases very rapidly. If we determine the eigenvalue for the screened Coulomb potential by solving $u\left(z_{1}\right)=0$ by Newton's method, we get only about half the significant figures when $a=0.1$ than we did by matching onto the asymptotic expression at the same value of z_{1}.

We have the further advantage of having an asymptotic approximation for the solution for $z>z_{1}$ with a continuous derivative at the matching point. Furthermore, the method we have proposed will work for the case where we wish to match onto the asymptotic solution u^{+}rather than u^{-}, whereas Hodgson's method is not applicable in this case. Such cases arise, for example, in the calculation of resonances in atomic systems, in which case the eigenvalues are complex numbers (cf Holubec 1985). Thus we have developed a method which is applicable to a wide variety of situations and produces highly accurate results for a modest amount of computational effort.

Acknowledgments

This work was supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada and by the Institute for Space and Terrestrial Science. ADS and JAS gratefully acknowledge the support and hospitality of the Joint Institute for Laboratory Astrophysics and the award of a visiting fellowship to ADS.

References

Bell S, Davidson R and Warsop P 1970 J. Phys. B: At. Mol. Phys. 3 123-8
Birkhoff G and Rota G-C 1978 Ordinary Differential Equations 3rd edn (New York: Wiley)
Coddington E A and Levinson N 1955 Theory of Ordinary Differential Equations (New York: McGraw-Hill)
Debye P and Hückel E 1923 Phys. Z. 24 185-206
Dieudonné J 1971 Infinitesimal Calculus (Boston: Houghton Mifflin)
Fues E 1926 Ann. Phys., Paris 80367
Gerry C C and Laub J 1985 Phys. Rev. A 32 709-12
Hodgson R J W 1988 J. Phys. A: Math. Gen. 21 679-83
Holubec A 1985 PhD Thesis York University, Toronto
Holubec A and Stauffer A D 1985 J. Phys. A: Math. Gen. 18 2141-9
Ince E L 1956 Integration of Ordinary Differential Equations (Edinburgh: Oliver and Boyd)
Killingbeck J 1982 J. Phys. B: At. Mol. Phys. 15 829-34
Kratzer A 1920 Z. Phys. 3289
Lam C S and Varshni Y P 1979 Phys. Rev. A 19 413-15
Landau L D and Lifshitz E M 1965 Quantum Mechanics: Non-Relativistic Theory (Oxford: Pergamon) 2nd edn
Mathews P M, Seetharaman M and Raghavan S 1982 J. Phys. A: Math. Gen. 15 103-11
Rogers F J, Graboske H C Jr and Harwood D J 1970 Phys. Rev. A 1 1577-86
Vrscay E R 1986 Phys. Rev. A 33 1433-6
Yukawa 1935 Proc. Phys. Math. Soc. Japan 1748

